ADAM ${ }^{\text {™ }}$ DBX Dual Bus Expander

Telex Communications, Inc. • 12000 Portland Ave South • Burnsville, MN 55337

STOP!!!

You must have REV D of the DBX backplane!!!

Contact your Sales Representative for more information.

ADAM Dual Bus Expander

Proprietary Notice

The RTS product information and design disclosed herein were originated by and are the property of Telex Communications, Inc.. Telex reserves all patent, proprietary design, manufacturing, reproduction, use and sales rights thereto, and to any article disclosed therein, except to the extent rights are expressly granted to others.

Copyright Notice

Copyright © 2004 by Telex Communications, Inc. All rights reserved. Reproduction in whole or in part without prior written permission from Telex is prohibited.

Unpacking and Inspection

Immediately upon receipt of the equipment, inspect the shipping container and the contents carefully for any discrepancies or damage. Should there be any, notify the freight company and the dealer at once.

This package should include the following:

2- RG-59 Coax Cable	902072750
Plastic Bag	$576027-000$
4 - Panhead Screws 2.5x10.0	$59000-240$
1 - Front Card Assembly	$90207532-501$
1 - Bus Expansion Back Card Assy	$90207557-500$
1 - DBX User Manual	$90357532-000$

Warranty Information

RTS products are warranted by Telex Communications, Inc. to be free from defects in the materials and workmanship for a period of three years from the date of sale.

The sole obligation of Telex during the warranty period is to provide, without charge, parts and labor necessary to remedy covered defects appearing in products returned prepaid to Telex. This warranty does not cover any defect, malfunction or failure caused beyond the control of Telex, including unreasonable or negligent operation, abuse, accident, failure to follow instructions in the Service Manual or the User Manual, defective or improper associated equipment, attempts at modification and repair not authorized by Telex, and shipping damage. Products with their serial numbers removed or effaced are not covered by this warranty.

To obtain warranty service, follow the procedures entitled "Procedures for Returns" and "Shipping to Manufacturer for Repair or Adjustment".

This warranty is the sole and exclusive express warranty given with respect to RTS products. It is the responsibility of the user to determine before purchase that this product is suitable for the user's intended purpose.

ANY AND ALL IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY ARE LIMITED TO THE DURATION OF THIS EXPRESS LIMITED WARRANTY.

Neither Telex nor the dealer who sells RTS products is liable for incidental or consequential damages of any kind.

Customer Service

Technical questions should be directed to:
Customer Service Department
RTS/Telex
12000 Portland Avenue South
Burnsville, MN 55337 USA
Telephone: (800) 392-3497
Fax: (800) 323-0498

Return Shipping Instructions

Customer Service Department
Telex Communications, Inc.
Telephone: (800) 392-3497
Fax: (800) 323-0498
Factory Service: (800) 553-5992

Be prepared to provide the company name, address, phone number, contact person regarding the repair, the type and quantity of equipment, a description of the problem, and the serial number(s).

Shipping to Manufacturer for Repair or Return

All shipments of RTS products should be made via United Parcel Service or the best available shipper, prepaid. The equipment should be shipped in the original packing carton; if that is not available, use any suitable container that is rigid and of adequate size. If a substitute container is used, the equipment should be wrapped in paper and surrounded with at least four inches of excelsior or similar shock-absorbing material. All shipments must be sent to the following address and must include the Return Authorization.

Factory Service Department
Telex Communications, Inc.
8601 East Cornhusker Hwy
Lincoln, NE 68505 U.S.A.
Attn: Service
Upon completion of any repair the equipment will be returned via United Parcel Service or specified shipper collect.

End-User License Agreement for Telex ${ }^{\oplus}$ Software

IMPORTANT: PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THIS PRODUCT.

THIS DOCUMENT STATES THE TERMS AND CONDITIONS UPON WHICH TELEX COMMUNICATIONS, INC. (the "COMPANY") OFFERS TO LICENSE THE INSTALLED SOFTWARE OR PROGRAM (the "SOFTWARE") FOR USE WITH THIS PRODUCT IN WHICH IT WAS INSTALLED. YOU ARE AGREEING TO BECOME BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT USE THIS PRODUCT. PROMPTLY RETURN THE PRODUCT TO THE PLACE WHERE YOU OBTAINED IT FOR A FULL REFUND.

The installed software as supplied by the Company is licensed, not sold, to you for use only under the terms of this license, and the Company reserves all rights not expressly granted to you. You own the product or other media on or in which the Software is originally or subsequently recorded or fixed, but the Company retains ownership of all copies of the Software itself.

License: This license allows you to use the Software for internal purposes only on a single product in which it was installed.
Restrictions: (a) You may not market, distribute or transfer copies of the Software to others or electronically transfer or duplicate the Software. YOU MAY NOT REVERSE ENGINEER, DECOMPILE, DISASSEMBLE, MODIFY, ADAPT, TRANSLATE, RENT, LEASE OR LOAN THE SOFTWARE OR CREATE DERIVATIVE WORKS BASED ON THE SOFTWARE OR ANY ACCOMPANYING WRITTEN MATERIALS. (b) The Software and the accompanying written materials are copyrighted. Unauthorized copying of the Software, including portions thereof or the written materials, is expressly forbidden. (c) You understand that the Company may update or revise the Software and in so doing incurs no obligation to furnish such updates to you.

Limited Warranty: The Company does not warrant that the operation of the Software will meet your requirements or operate free from error. The Company DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS EITHER EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Limited Liability: The liability of the Company for any claims arising out of this License based upon the Software, regardless of the form of action, shall not exceed the greater of the license fee for the Software, or $\$ 50$.

Table of Contents

General Description of DBX Communication Scheme and Failure Modes 9
DBX Wiring and Communications 9
Failure Modes 10
Definitions 10
ADAM DBX Upgrade 17
ADAM DBX Link Mapping 22
Dual Bus Expander (DBX) LED Diagnostics 27
ADAM DBX Coax Interconnect 37

General Description of DBX Communication Scheme and Failure Modes

DBX Wiring and Communications

The DBX cards in all system are wired such that if you could unplug the DBX cards with their port wiring intact and lay them out on the ground untangled, the DBX cards and the wiring connections would form a giant circle.

If all the links in a DBX system are up and running, it is possible for a DBX card to send a message out its PORT A, and receive the same message back on its PORT B after the message had passed through every other DBX card in the system (assuming that every card that received a message on one port then transmitted the message on its other port).

The purpose of this configuration is to allow any DBX card to have at least two paths to every other DBX card using coax only. A card can transmit out either of its ports to reach another card as long as all links are up. If a single link goes down (a link being a pair of coax cables for TX and RX), every card can still reach every other card using coax only by going out either its PORT A or its PORT B since a broken circle still has all the points connected by a single line.

Only when two or more links are broken is it possible to isolate one or more DBX cards from other cards on the coax, but even in this case it is often possible to reach the isolated cards (which will be described later).

A DBX card can transmit and/or receive messages on either of its ports, as well as the control bus. However, a DBX card only transmits on the control bus to the destination card (the card who is the ultimate target of the message). All messages transmitted by a DBX card go out one of its ports, unless the target card is in the same frame as the DBX card, in which case the DBX card will use the control bus to make final delivery of the message.

This means that the "active" DBX card in the first frame can send a message to any DBX or AIO card in the system, as long as it has a coaxial path to the destination frame. If the "active" DBX card can reach the destination frame via coax hops, then the message can be delivered on the control bus by the DBX card in the destination frame.

This does NOT guarantee, however, that the destination card can send a message back to the "active" DBX card in the first frame. Each slave frame has an "active" DBX card who is responsible for polling the AIO cards and reporting status changes to the "active" DBX card in the first frame. All the AIO cards in a slave frame keep track of the "active" DBX card in their frame, and messages that need to go to the first frame are sent to the "active" DBX card in the slave frame for forwarding.

The asymmetry in message paths occurs because the DBX card in the slave frame, which delivered a message to the AIO card, may not be the "active" DBX card. The "active" DBX card may not have a coaxial path to the first frame, even though the "active" DBX card in the first frame does have a coaxial path to the destination frame. For this to occur, there has to be more than one link failure.

It might be possible to allow intermediary control bus hops in routing a message, however, the number of possible message routes becomes enormous, and it requires that every DBX card be aware of the link status of every other DBX card which becomes extremely difficult to do when you are trying to use link status to determine message routing, but you need to use message routing to pass link status back and forth.

An even worse consequence of allowing arbitrary message routing is that it becomes difficult to predict the order of arrival of transmitted message. In the case of crosspoint messages, the order is critical; suppose two messages are sent, one to turn a crosspoint on, the other to turn it off; now suppose the messages end up taking different routes because of a link status change, and the second message arrives first. The AIO card that receives the messages turns the crosspoint off (it already was off), and then turns it on, and the crosspoint is left in the wrong state!

Failure Modes

In general, communications between two frames (called control) can occur when the "active" DBX card in the first frame has a coaxial path to the destination frame, AND the "active" DBX card in the destination frame has a coaxial path to the first frame.

Audio between frames will exist as long as there is a single valid link between the two frames. In redundant systems, there are two links between each frame, so losing either one will not affect audio (aside from a small glitch as the fault is recognized and corrected). In non-redundant systems, there is only one link between each frame, so if it goes down, the audio between the two frames is lost.

Control in a frame (i.e. the ability to talk to keypanels and act on keypresses) will exist as long as there is a coaxial path between the frame and the "active" DBX in the first frame, AND, there is a coaxial path between the "active" DBX in local frame and the first frame.

If a frame loses contact with the first frame, the crosspoints that have already been made will stay. If contact is restored before any critical messages need to be sent (such as crosspoints or key presses), the frame will resume normal operation. If a critical message needed to be sent but couldn't be delivered, the frame's panels will go to (....) and come back when contact is finally restored.

In a redundant system, it is possible to pull any one DBX card, or cut any one link (RX or TX or both), and the system will continue to operate normally (other than a small glitch in audio as faults are detected and the redundant resources kick in). It is even possible to pull other DBX cards, and/or cut other links without adversely affecting system operation, as long as there is at least one link between each frame (to provide audio), and as long as the "active" DBX cards in each slave frame have a valid coaxial path to the first frame, and the "active" DBX card in the first frame has a valid coaxial path to each slave frame (to allow for control operations).

In a non-redundant system, the same rules for control apply, however every cut link causes the audio between the affected frames to be lost, and every pulled DBX card loses the audio between that frame and the two frames it was connected to. This is because every link in a non-redundant system carries audio. If a frame was completely isolated because all its links were down, any crosspoints that already existed within the frame would stay made, but no new crosspoint changes could occur.
Lastly, every frame needs at least one DBX card to operate because the DBX cards provide the clock to the frame and, as with SBX systems, slave frames must have at least one link up that can trace its clock origin back to the first frame in order for the audio in that frame to be synched to the audio in other frames.

Definitions

Redundancy: We talk about DBX systems as being either "Redundant Audio", or "Non-Redundant Audio" where we've defined redundant audio as meaning that it is possible to cut any one DBX coaxial link without losing any audio between frames.

In order for redundant audio to exist, there must be two coaxial links between every pair of frames. In a three frame system, that means two links between frames 1 and 2, two links between frames 2 and 3, and two links between frames 1 and 3 (or six links in total). A non-redundant three frame system needs only one link between each pair of frames, (1-2, 2-3, and 1-3, or three links in total).

When there are two links between a pair of frames, only one link is required to pass audio (although both carry the audio between frames, the audio is only used from one link). So, if one link is cut, the other link can immediately be used to provide the same audio.

Because a DBX card can connect to two other frames, both ports on a DBX card are only needed when there are an odd number of frames. When there are an even number of frames, there will be one DBX card in each frame that has a port that is unused. However, since our message passing scheme requires that all the DBX cards be connected in a big loop, the unused ports on the DBX cards are connected to each other anyway which leads to "Partial Redundancy" of audio in systems with an even number of frames.

For instance, the 4 frame "Non-Redundant Audio" system (480×480) is actually "Partially Redundant" because there are two links between frames 1 and 2 , and two links between frames 3 and 4 . Similarly the 6 frame "Non-Redundant Audio" system (672×672) is also partially redundant because there are two links between frames 1 and 2 , between frames 3 and 4, and between frames 5 and 6 .

These configurations are partially redundant because you can cut a link between frames 1 and 2 (or frames 3 and 4 , or frames 5 and 6) without losing any audio, but cutting a link between frames 2 and 3 (for instance) would cause a loss of audio between those frames.

Link: A connection between two DBX cards consisting of 2 coaxial cables (one for TX and one for RX).

Path: A way to get from one DBX card to another by travelling only on links (not on the control bus). A path consists of a series of connected DBX cards. A message travels along a path when it is received by a DBX on one port, and transmitted by the same DBX card on its other port. The DBX intercom wiring scheme creates one long circular path between all the DBX cards. This allows the circular path to be broken (by removing one link), and yet still allow a continuous path between all the DBX cards. This gives us fault tolerance for messaging, in that any ONE link can fail without preventing any messages from being delivered.

Active DBX: One DBX card in each frame is the Active DBX. The Active DBX card will be in either slot 8 or slot 9. In the first frame, the Active DBX card is in charge of the entire intercom. It handles crosspoints, volumes, and all intercom functionality. It is the only DBX card which originates messages to AIO cards. In a DBX system, the Active DBX card in the first frame plays the role normally played by the Active MC in a standard intercom. In a slave frame, the Active DBX is the contact point for AIO cards trying to send messages back to the Active DBX in the first frame.

Control: The ability of the Active DBX in the main frame to send messages to, AND receive messages from, AIO cards in slave frames. In order to send a message from one frame to another, a DBX card must have a continuous coaxial path from its frame to the destination frame. Note that because, in most cases, there are more than one DBX card per frame, it is possible for a message to be received by a DBX card in the destination frame and delivered to the target AIO card on the control bus even if that DBX card isn't the Active DBX card in that frame. A return message generated by the AIO card would be transmitted to the Active DBX card in its frame for delivery via a continuous coaxial path to a DBX card in the first frame who will then deliver the message to the Active DBX card in the first frame on the control bus (assuming that the DBX card in the first frame that received the message on one of its ports isn't already the Active DBX). This means that the message routing between an AIO card in a slave frame and the Active DBX card in the first frame is not symmetrical. Depending on which links are up or down, it may be possible for the Active DBX card to transmit to an AIO card, but impossible for the AIO card to send a return message (or vice-versa). So, in order for there to be "Control" between the first frame and a slave frame, there must be a valid continuous coaxial path between the Active DBX card in the first frame and any DBX card in the slave frame, AND, a return path between the Active DBX card in the slave frame, and any DBX card in the first frame.

When there are at least two DBX cards per frame, we have "Redundant Control", in that any ONE DBX card can fail, and another DBX card will take over for the failed card. In systems with only one DBX card per frame, there is no redundant control.

Audio Clock: There is only one master clock used for audio in the entire intercom. This clock is provided by one of the cards in slot 8 or slot 9 in the first frame (usually a DBX card, although it could be an AIO card in slot 8 in systems that have only 1 DBX card per frame). In order for stable audio to be present in a frame, it must have access to the master audio clock. The audio clock is passed from the first frame to slave frames via the links. A slave frame with a valid direct link to the first frame from a DBX card in slot 8 or slot 9 will always have access to the audio clock. The audio clock can also be passed from one slave frame to another if the link between the slave frames has the proper link master/slave relationship, and the link slave card is in slot 8 or slot 9 of the second slave frame (the DBX cards will always try to create links with the proper orientation of the links).

Audio: There will be stable audio between frames if both frames have a valid audio clock, AND there is a valid link between the frames

If both of the frames also have "control" (i.e. round-trip communications with the Active DBX card in the first frame), then the audio between frames is "dynamic", meaning that crosspoints between the two frames can change dynamically when keypanel keys are pressed or other intercom events occur. If one frame has "control", but the other doesn't, then ports in the frame with "control" will be able to listen to ports in the other frame, but not talk to them. The frame without control will have "static" audio, meaning that only crosspoints that existed before control was lost will still exist, and that no new crosspoints can be made until control is restored.

If "control" between the first frame and a slave frame disappears for more than about 5-10 seconds, then the panels in the slave frame will "go to stars". This will happen sooner if there are any "important" messages that need to be sent between frames, but that cannot be delivered. "Important" messages are things like key presses or crosspoint closures. The panels are forced to stars when "important" messages are missed in order to ensure that all crosspoints are in the correct state when "control" is restored. When there are two links between each frame we have "Redundant Audio", in that any ONE of the two links between two frames can fail and the audio between the frames can still be carried on the other link.

In a redundant audio system, it is possible to pull any one DBX card, or cut any one link, and the system will continue to operate normally (other than a small glitch in audio as faults are detected and the redundant resources kick in). It is even possible to pull other DBX cards, and/or cut other links without adversely affecting system operation, as long as there is at least one link between each frame (to provide audio), and as long as the Active DBX cards in each slave frame have a valid coaxial path to the first frame, and the Active DBX card in the first frame has a valid coaxial path to each slave frame (to allow for control operations).

In a non-redundant audio system, the same rules for control apply, however every cut link causes the audio between the affected frames to be lost, and every pulled DBX card loses the audio between that frame and the two frames it was connected to (because every link in a non-redundant system carries audio).

Test Audio: "Test Audio" is artificially generated audio by the SBX/DBX that it can produce, publish, forward, receive, and test. It is used by the SBX/DBX to ensure that the links are passing valid audio between frames. If the SBX/DBX detects that the link is up, but that the audio is corrupt (which does occur), the SBX/DBX tears down the link and builds it up again (which almost always solves the problem).

The need for Test Audio was discovered when the SBX was introduced. It was observed that it was possible to bring up the coax link with valid frame sync, but that no audio would be produced. The same situation occurs with the DBX cards. Test audio allows the SBX/DBX cards to detect when the link is not passing audio even when the frame sync is OK.
The use of Test Audio is necessary to ensure that the coax links are properly passing audio, however, the use of Test Audio also can affect the number of available ports in some system configurations.

An SBX/DBX link can forward 128 timeslots, but Test Audio requires 4 timeslots per link. In the 256x256 (2 frame SBX or DBX), and 384×384 (3 frame DBX) systems which have only 1 SBX/DBX card per frame, all timeslots per link are needed for real audio, but if Test Audio is enabled, the last 4 timeslots in each frame are not available, which means that only 124 timeslots of real audio can be passed between frames.

This means that the last four ports in each frame can listen to, but not talk to ports in other frames. Similarly, ports in other frames can talk to, but not listen to the last four ports in each frame. Within any frame, any port can talk or listen to any other port in that frame, the timeslots are only lost going between frames.

ADAM Dual Bus Expander

Partial Redundancy: (4 \& 6 Frame Non-Redundant Systems only) Consider the 4 -frame non-redundant system. Each frame requires 3 links - one to each of the other frames. That requires 2 DBX cards, which gives us 4 links, i.e. one spare link per frame. The wiring table is such that there will be 2 links between frames 1 \& 2 , and 2 links between frames 3 \& 4; there is a single link between each other pair of frames.

Similarly, the same condition exists in the 6 frame non-redundant system. Looking at the wiring table it can be noticed there are 2 links between frames $1 \& 2,2$ links between frames $3 \& 4$, and 2 links between frames $5 \& 6$ and single links between each other pair of frames.

The DBX system will handle these links automatically: if one link fails, the other link automatically provides the audio.

System Sizes:

2 Frame Non-Redundant

- 256×256 with Test Audio disabled.
- 248×248 with Test Audio enabled *.
(256 ports, but only 124 ports per frame have full connectivity).
- 2 DBX cards total (1 per frame).
- 4 coax interconnections.
- this system actually has redundant audio on its two links.
- however it does not have redundant control.
- losing one link has no effect.
- losing the slave DBX means losing frame 2.
- losing the master DBX means losing the whole intercom.

2 Frame Redundant

- 240×240 with or without Test Audio.
- 4 DBX cards total (2 per frame).
- 8 coax interconnections.
- this system has both redundant control and redundant audio.
- any one of the four links can carry all the audio.
- losing one DBX in each frame has no effect.
- losing up to three links has no effect (as long as the Active DBX has at least one link up).

3 Frame Non-Redundant

- 384×384 with Test Audio disabled.
- 372×372 with Test Audio enabled *.
- (384 ports, but only 124 ports per frame have full connectivity).
- 3 DBX cards total (1 per frame).
- 6 coax interconnections.
- no redundant audio or control.
- losing a slave DBX card means losing a frame.
- losing the master DBX card means losing the whole intercom.
- losing a link means losing audio between two frames.
* The last 4 ports per frame are not available for normal intercom use due to Test Audio enabled. These ports, however, may be used as monitor outputs only if desired.

For all systems that follow, the failure modes are described in the previous discussion of Control and Audio.

ADAM Dual Bus Expander

3 Frame Redundant

- 360×360 with or without Test Audio.
- 6 DBX cards total (2 per frame).
- 12 coax interconnections.
- redundant control and audio
- Loosing any single DBX card has no effect.
- Loosing any single link has no effect.
- Loosing either Master Controller in primary frame has no effect.
- If both Master Controllers in primary frame are lost the intercom will remain functional, however, the following peripheral devices will be dysfunctional:
PAP(s) Trunk Masters
UIO256s AZedit
LCP(s) Programming from keypads at panels
In general, any keypanel which was operational prior to a failure such as this will retain its functionality within the intercom.

The above also applies to any multi-frame redundant system.

4 Frame Non-Redundant

- 480×480 with or without Test Audio.
- 8 DBX cards total (2 per frame).
- redundant control.
- partially redundant audio.
(there are two links between frames 1 and 2, and also between frames 3 and 4).

4 Frame Redundant

- $\quad 448 \times 448$ with or without Test Audio.
- $\quad 12$ DBX cards total (3 per frame).
- redundant control and audio.

5 Frame Non-Redundant

- 600×600 with or without Test Audio.
- 10 DBX cards total (2 per frame).
- redundant control.
- no redundant audio.

5 Frame Redundant

- $\quad 520 \times 520$ with or without Test Audio.
- 20 DBX cards total (4 per frame).
- redundant control and audio.

6 Frame Non-Redundant

- $\quad 672 \times 672$ with or without Test Audio.
- $\quad 18$ DBX cards total (3 per frame).
- redundant control.
- partially redundant audio.
(there are two links between frames 1 and 2, frames 3 and 4, and also frames 5 and 6).

7 Frame Non-Redundant

- $\quad 784 \times 784$ with or without Test Audio.
- 21 DBX cards total (3 per frame).
- redundant control.
- no redundant audio.

8 Frame Non-Redundant

- 832×832 with or without Test Audio.
- $\quad 32$ DBX cards total (4 per frame).
- redundant control.
- partially redundant audio (not detailed yet).
- NOT CURRENTLY SUPPORTED IN DBX FIRMWARE.
- NO WIRING TABLE HAS BEEN

GENERATED.

9 Frame Non-Redundant

- $\quad 936 \times 936$ with or without Test Audio.
- $\quad 36$ DBX cards total (4 per frame).
- redundant control.
- no redundant audio.
- NOT CURRENTLY SUPPORTED IN DBX FIRMWARE.
- NO WIRING TABLE HAS BEEN

GENERATED.

ADAM Dual Bus Expander

An ADAM Intercom System can communicate with up to 3 separate AZedit sessions, all running on separate computers. Multiple sessions are not supported for ADAM CS or Zeus. To use this feature, you must configure the Advanced communications settings on the computer running the primary AZedit session. This is the computer connected to J 1 of the XCP-ADAM-MC Master Controller Breakout Panel. Second and third computers can then be connected to J9 and J10 of the Master Controller Breakout Panel as explained below.

If you are running AZedit together, it is best to have AZedit on J 1 . This is because the J 1 port has to be used to configure J 9 and J 10 (baud rate, which ports are enabled, and what protocols are supported), and only AZedit supports this. Once the primary AZedit has been configured, each AZedit port may be operated independently from one another.

The standard AZedit connection is via J1 of the ADAM breakout panel supporting baud rates of 9600 and 38.4 K (selected via DIP switch 1-1 on each MC). The auxiliary ports also support 19.2 K (configured by the AZedit session connected to J1).

There are limitations on the baud rates of the auxiliary ports.
In SBX and single frame ADAM intercoms, a baud rate of 38.4 K for the auxiliary ports will usually work, but communications errors will occasionally cause AZedit to be bumped off-line. A baud rate of 19.2 K is recommended for these ports.

In DBX intercoms, communications errors will occur on J 9 and J10, even at 9600 baud. However, J7 and J8 can be used in place of J 9 and J10, by closing DIP switch 1 position 6 on both peripheral controller cards (frame 1). These ports have FIFO buffers built into them, which significantly reduces the number of communications errors. However, communications errors can still occur if multiple AZedit sessions are active, which can cause AZedit to go off-line.

Note that J7 and J8 are RS-485 ports and require an external converter (e.g. a Telebyte model 285M or 365M) to connect each of these ports to a computer's RS-232 serial port.

The following is a procedure for setting up AZedit communications with up to three separate computers in a DBX system.

PROCEDURE: (see figures 1 \& 2, AZedit Screen Views)

Minimum Software Requirements:
AZedit = 2.06.02
Peripheral Controller $(P C)=10.2 \cdot x$
DBX $(\mathrm{U} 21, \mathrm{U} 22)=$ 1.1.1, Altera 1.1
AIO = 10.0.2

- Set dip switch S1-1 for each of the two PC cards in frame 1 to select desired baud rate for primary

AZedit. (ON = 38.4k)

- Set dip switch S1-6 to "on" for each PC card in frame 1 to enable ports J7 \& J8 AZedit support.
- Run AZedit and go on-line.
- Select "OPTIONS"
- Select "COMMUNICATIONS"
- Select "ADVANCED" - (must be connected to matrix to see this screen, see Figure 1.)
- Then Communication screen (see Figure 2.), Secondary AZedit Sessions J9/J10
- Advanced Settings (ADAM Only)

Remember, operationally J9 becomes J7 \& J10 becomes J8 when PC dip switch S1-6 is "ON". AZedit will not change these port screen designations

TO COMPUTER
DE9 RS232
SERIAL PORT

ADAM Dual Bus Expander

DBX Multiple AZedit Sessions

Baud Rate: Select the highest baud rate that will work correctly. Unlike the baud rate setting for the primary AZedit session, which is set by a master controller DIP switch, the baud rates for second and third computers are set in software, and there are no DIP switches for this.

This configuration information is stored in configuration flash, (U3/U5), so the intercom will remember it. However, if the intercom loses its config flash for any reason (e.g. it gets a 1st birthday, perhaps because a new version of firmware is downloaded to it), it will come up with J 9 and J 10 disabled by default.

Figure 1

Figure 2 J 9 \&J10 are in reality J7 \& J8 on ADAM controller breakout panel

ADAM DBX Upgrade

Single frame ADAM to multi-frame ADAM DBX or existing multi-frame SBX to DBX

Caution: Read entire procedure before attempting upgrade
Important: Be aware there can be a 2 minute period for each group of cards selected during the download process where the master controller will take each Audio I/O card off line and reprogram its firmware. Any disruption during this period (loss of power, card removal, manually resetting cards) will result in I/O card failure! If this happens, you will either have to return the affected cards for replacement, or you will have to remove the EEPROM chips from the affected cards and manually reprogram them with an EEPROM programmer. Since this could potentially result in a major disruption in communications, we recommend that you only update a limited number of I/O cards at a time, and updating should be performed during noncritical periods of intercom usage.

Make sure AZedit is the active window, and not the help file. (Click anywhere on the AZedit window to make it the active window.) Then, press Ctrl+Shift+D on the computer keyboard. This will open the Firmware Download dialog.

Note: If Ctrl+Shift+D does not work, firmware download may be disabled. To enable this feature, go to the Options menu and select Preferences. Then, click on the Advanced tab. In the Advanced settings, place a check next to Allow firmware download, then click Apply. Click OK to exit. You should now be able to use the firmware download feature.

UPGRADE PROCEDURE

Minimum requirements:
a) Master Controller cards must have Altera ver 4.1 or higher and RAM installed in U10-U13 \& U15-U18. If Master Controllers have ver 8.x firmware, a M/C card swap is necessary to bring the Masters up to the level capable of a DBX upgrade.
b) DBX cards must have firmware ver 1.2.1 or higher and Altera ver 1.1 or higher.
c) $\quad \mathrm{AIO}$ cards ver 10.0.3 (or higher).
d) UIO256 requires firmware ver 2.0 (checksum 78b5, wired in a multi-drop mode, dip switch S1-2 closed and RS485 data going to J2 of each UIO256 (or higher).
e) PAP940, 951, 952 requires firmware ver 7.3.x (or higher).
f) Trunking, requires firmware ver 7.4.0 and CStrunk ver 7.3.1 (or higher). Trunking should be upgraded first before the DBX's.
g) LCP102's require ver 1.4 (or higher).
h) AZedit ver 1.07.06 (or higher).

DBX Upgrade

1. Save current intercom setup file to disk (very important).
2. If trunking, disconnect from Trunk Master.
3. Download ver 10.0.2 or higher AIO firmware to all AIO cards half a frame at a time with older existing SBX controller cards still in frames. Confirm successful download with AZedit in Status/Software Versions/AIO Cards. (fig. 1)

- If physically changing MC and DBX flash, continue with steps 4-16. If downloading, skip these steps and proceed to steps 17-28.

4. Power down entire system.
5. Change existing back cards in the appropriate frame slots to DBX back cards. See frame layout drawings relating to DBX system size and install coax links per cable diagram.
6. Remove all slave frame Master Controller cards and back cards. These slots will remain blank and never used again. DO NOT use for spare card storage.
7. In frame 1 only, change Master and Standby Controller flash U2 \& U4 to new DBX Peripheral Controller flash ver 10.2.x. These cards will be heretofore referred to as "Peripheral Controllers" (PC).

ADAM Dual Bus Expander

8. Put only one DBX card in frame 1, slot 9 (turn on DIP 7), and one PC card in frame 1, slot 19 (also needs dip 7 on).
9. Power up frame 1 ONLY and ensure AZedit goes on line. Resize to new final system size under Options/Intercom Configuration. Default is 3 frame redundant audio system. (fig. 2)
10. Check "use DBX cards" in Options/Intercom Configuration/Resources, if not already detected, always check "use test audio". You can also "use redundant audio" only if it is appropriate for the system being set up]. (fig. 2) Also check Options page to be sure number of talk levels, remote trunk master (not to be confused with local trunking), and other options are set now, otherwise the system will first birthday again if you need to change them later. (fig 4)
11. If applicable, select "Apply" and the system will reconfigure itself and re-start.
12. After system has settled down, plug in the standby DBX into slot 8 of frame 1 and let it update. Next plug in the standby PC into slot 20 of frame 1, (remember both dips 7 need to be on) and let it update.
13. Insert all remaining DBX cards in each slave frame (dips 7 must be off) and power up all frames. This may take a little time - be patient. Verify I/O cards can be seen with proper versions in Status/ Software Versions/AIO Cards. (fig. 1)
14. Check DBX Link Status. (fig 3)
15. Send saved intercom setup file from step 1 above if necessary.
16. Re-connect Trunk Master if appropriate.

If Downloading PC's and DBX Cards

(If steps 1-16 above have been performed, ignore this section)
17. Pull MC \#1 (slot 19), ensure AZedit is on line, and download MC \#2 (slot 20). Pull MC \#2 (slot 20) and put back MC \#1 (slot 19), ensure AZedit is on line, and download it.
18. After downloading both MC's (now PC's), leave only PC \#1 in slot 19.
19. Power down system and install DBX back cards in the appropriate card slots in frame 1.
20. Install a DBX card in slot 9 of frame 1 and power up. Download this card and when completed, remove it and install another in the same slot 9 and download it.
21. Resize to new final system size under Options/Intercom Configuration. Default is 3 frame redundant audio system. (fig. 2)
22. Check "use DBX cards" in Options/Intercom Configuration/Resources, if not already detected, always check "use test audio". You can also "use redundant audio" only if it is appropriate for system being set up].(fig. 2) Also check Options page to be sure number of talk levels, remote trunk master (not to be confused with local trunking), and other options are set now, otherwise the system will first birthday again if you need to change them later. (fig. 4)
23. If applicable, select "Apply" and the system will reconfigure itself and re-start.
24. When the resize is done, you can install the first downloaded DBX into slot 8 and plug in the second PC into slot 20 as well.
25. Install DBX back cards and DBX controller cards in all slave frames, power up these frames and download all slave DBX's. Verify I/O cards can be seen with proper versions in Status/Software Versions/AIO Cards. (fig. 1)

Note: Switch 7 should be in the OFF position for the slave frames on the DBX card.
26. Check DBX Link Status. (fig 3)
27. Re-send saved setup file from step 1 if required.
28. Re-connect Trunk Master if appropriate.

Special Note: In 2 \& 3 frame non-redundant systems, the last 4 ports in each frame will be unusable due to test audio. This will affect overall system layout breakout cabling.

Figure 1. Verify software versions (steps 3,13, 25)

Figure 2. Set up frame size and DBX options (steps 9,19, 20)

ADAM Dual Bus Expander

Azede-[Towimele						-18)
Fiee athe Ese ver	us axtioss logeme					
	의이기 지	a) $+1+1$				
DBX	Stotus	Link A	Link B	Audio A	Audio B	
1:008	OK Active	OK ALL	OK ALL	361-480	121-240	
1:009	OK Standby	OK AlL	OK ALL	-	241-360	
2:008	OK Active	OK AlL	OK All	$361-480$	001-120	
2:009	OK Standby	OK ALL	OK ALL	-	241-360	
3:008	OK Active	OK All	OK All	121-240	361-480	
3:009	OK Standby	OK ALL	OK ALL	001-120	-	
4:008	OK Active	OK AlL	OK All	-	121-240	
4:009	OK Standby	OK All	OK All	241-360	001-120	

Figure 3. DBX Link Status (steps 14)

Figure 4. Set up Options page (steps 10, 20)

ADAM Dual Bus Expander

ADAM Intercom Size vs. SBXJDBX and AIO Card Population										
								DBXCardPopulationXS		
									7/22000	
Number of			17		Single Bus Expanders with 8 port Analog I/O Cards					
Number of Panels Per lO Card			8							
	Ports									
Number			Bus Expanders			10 Cards			Timeslots	Notes
of Frames	Total	Per Frame	Numberl-mg	Total/Sys.	Slots Used	Numberl-me	Total/Sys.	Increase	Forwarded	
1	136	136	0	0	0	17	17	17		NoBXs
2	256	128	1	2	9	16	32	15		
3	360	120	2	6	8,9	15	45	13		
4	448	112	3	12	8,9,10	14	56	11		

Number	Ports		Bus Expanders			10 Cards			Timeslots	Notes
of Frames	Total	Increase	Number/Frme	Total/Sys.	Slots Used	Number/Frme	Total/Sys.	Increase	Forwarded	
1	136	136	0	0	0	17	17	17	NA	NoBXs
2	256	120	1	2	g	16	32	15	128	
3	384	128	1	3	9	16	48	16	128	
4	480	96	2	8	8,9	15	60	12	120	
5	600	120	2	10	8,9	15	75	15	120	
6	672	72	3	18	8,9,10	14	84	9	112	
7	784	112	3	21	8,9,10	14	98	14	112	
8	832	48	4	32	7,8,9,10	13	104	6	104	
9	936	104	4	36	7,8,9,10	13	117	13	104	
10	960	24	5	50	7,8,9,10,11	12	120	3	96	
11	1056	96	5	55	7,8,9,10,11	12	132	12	96	

Note: 2 and 3 frame systems above loose 4 ports per frame due to Test Audio enabled. 2 Frame $=248$ ports, 3 Frame $=372$ ports.

Number of Slots	17	Dual Bus Expanders (Redundant Audio) with 8 port Analog I/O Cards	
Number of Panels Per VO Card	8	and Single Bus Expanders with 8 port Analog I/O Cards	

\left.| Number | Ports | | Bus Expanders | | | IO Cards | | | Timeslots | Notes |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| of Frames | Total | | Increase | Number/Fre | Total/Sys. | Slots Used | lumber/Frm | Total/Sys. | Increase | Forwarded |$\right]$

ADAM DBX LINK MAPPING

Frame Number/DBX Slot Number

DIAGRAM KEY

ADAM DBX LINK MAPPING

ADAM Dual Bus Expander

Dual Bus Expander (DBX) LED Diagnostics

Dual Bus Expander (DBX) LED Diagnostics

DBX Test Audio Display (page 3)

Red

Sub-Pages

Green
Port-A, ASIC 0 Audio Out page 1 Port-A, ASIC 0 Audio In Port-A, ASIC 1 Audio Out page 2 Port-A, ASIC 1 Audio In Port-B, ASIC 0 Audio Out page 3 Port-B, ASIC 0 Audio In Port-B, ASIC 1 Audio Out page 4 Port-B, ASIC 1 Audio In Combined Audio Out (folderifge 5 Combined Audio In (folded)

Note: In the combined display, the 24 bit audio samples of each ASIC
are "folded" twice, (i.e. upper 12 bits or'd with lower 12 bits, then upper
6 bits of the 12 or'd with the lower 6 bits), and displayed as 6 bits per
ASIC as indicated by the legend of the right side of the above chart.

Use the bottom button to select sub-pages.
Sub-page number is displayed on bits 22-23 while bottom is pressed and held in.

Control Bus TX Target is only shown when frame
being viewed is your frame.
display any frame in the system.

Pages 1,3,5 are very useful in determining link status.
Links can be displayed as up on page 1 but if a
control bus problem exists, that will be displayed on page 5.

DBX Message Queue Display (page 4)

Red	Sub-Pages	Green
Max Messages Allowed	page 1	Messages Currently in Use (real time)
Queue to Port A	page 2	Queue to Port B
Queue to Local MC	page 3	Queue to Local AlO Cards
Queue to AZedit	page 4	Queue to Command Line Protocol
Queue to PAP/LCP	page 5	Queue to This Card

Use the bottom button to select sub-pages. Sub-page number is displayed on bits 22-23 while bottom is pressed and held in.

DBX Card Status Display (page 5)

				sıəрие	xa snq	әวuәs	səte	u！Su！̣p	पs uәә」
						688	s əue．	sp．eo \times ¢	
009	669	869	L6S	965	S69	t69	86S	GL	4－9
269	165	069	689	889	L89	989	S89	$\dagger L$	9－9
t89	889	289	189	089	6LS	8L9	LLS	عL	g－s
$9<9$	GLG	t $\angle \mathrm{S}$	ع $\angle G$	ZLG	LLG	0＜9	699	ZL	H－G
899	L99	999	999	t99	E99	299	199	LL	q－G
099	699	895	LSG	99s	GSg	tgs	¢¢¢	02	2－9
ZS9	LSS	OSS	6 tS	8tS	LTS	975	StS	69	U－S
tos	EtG	ZヤG	$1+5$	0 OG	6¢¢	8\＆¢	L\＆G	89	a－s
98¢	G\＆9	†¢¢	\＆$¢$	乙®¢	LES		6Z9	$\angle 9$	L－G
829	LZ9	929	GZ9	tZS	\＆Z¢	ZZ9	129	99	9－9
02 S	619	89	LS	9 S	SLS	HS	qs	S9	S－9
29	HS	QS	605	80 S	LOS	909	G0S	†9	$t-9$
tos	EOS	ZOS	10 S	00 S	66t	86t	L6t	$\varepsilon 9$	ε ¢－9
967	G6t	t6t	ع6t	Z6t	167	06t	68 D	29	2－9
88 t	L8t	987	987	t8t	E8t	28%	186	19	－G
08t	$6 \angle\rangle$	8Lt	L	9＜t	GLV	$\square \angle t$	\＆ $2 ⿰ ㇒ ⿻ 土 ㇒$	09	－t
ZLt	LLV	$0 \angle \nabla$	69t	897	L9t	997	99t	69	$9+$
t9 ${ }^{\text {t }}$	ع9t	297	19t	097	6St	8St	LSt	89	9．t
9St	GSt	tSt	ESt	ZSt	LSt	OSt	6 切	$\angle 9$	Ht－
857		9 tt	Stt	totr	Ett	2tt	Ltt	99	a－t
0tt	685	8Et	LEt	98t	SEt	tet	$\varepsilon \varepsilon \square$	G9	a－t
乙८t	$1 \varepsilon \square$	0 0t	62t	8Zt	LZV	9Zt	SZ巾	ts	U－t
ちて巾	とで	Zで	LZt	0Zt	6	$8 \downarrow$	$\Delta \downarrow$	$\varepsilon 9$	a－t
97		HV	ど	2t	Ut	$a+$	60t	Z9	L
80t	LOt	90t	90t	tot	80t	20%	10 t	19	$9+$
00t	66ε	86ε	L68	968	S68	t68	ع68	09	st
268	16ε	068	68ε	88ε	L8E	98ε	988	67	－
t88	\＆88	288	18ε	08ε	$6 L \varepsilon$	8LE	LLE	87	$\varepsilon \downarrow$
9LE	GLE	$t \angle \varepsilon$	$\varepsilon \angle \varepsilon$	ZLE	$1 \angle \varepsilon$	$0<\varepsilon$	698	\angle	でも
898	L98	998	¢98	t98	ع98	298	198	97	－\dagger
8＊＊＇1	L－${ }^{\text {a＇｜}}$	9－®＇｜	$\mathrm{G}^{-\mathrm{C}^{\prime} \mathrm{C}^{\prime}}$	ギロ゙1	ع－a＇।	での＇｜	－－a＇	ẏawns	\＃107S
ann	nada	naan	กana	nann	กnad	กnan	nกna	वyヲO	OIV
umop $=0$	（L－Sのnult－Sa）SONI							OIV	8ヨWVy
$\mathrm{dn}=\cap$	009 WVGV－378＊							WGLSAS	

[^0]ADAM DBX Coax Interconnect

Rear view of DBX card

ADAM MATRIX FRAMES
FRONT VIEW

ADAM MATRIX FRAMES
FRONT VIEW

[^0]: ADAM Two Frame Non-Redundant Audio DBX

 - DBX Cards (1 per frame)

 16 - AIO Cards per Frame (248 of 256 ports)
 4-75 W Coax Interconnect Cables

